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Abstract. We propose a method for training deep convolutional neu-
ral networks (CNNs) to recognize the human actions captured by depth
cameras. The depth maps and 3D positions of skeleton joints tracked by
depth camera like Kinect sensors open up new possibilities of dealing
with recognition task. Current methods mostly build classifiers based
on complex features computed from the depth data. As a deep model,
convolutional neural networks usually utilize the raw inputs (occasionally
with simple preprocessing) to achieve classification results. In this paper,
we train both traditional 2D CNN and novel 3D CNN for our recogni-
tion task. On the basis of Depth Motion Map (DMM), we propose the
DMM-Pyramid architecture, which can partially keep the temporal or-
dinal information lost in DMM, to preprocess the depth sequences so
that the video inputs can be accepted by both 2D and 3D CNN models.
The combination of networks with different depth is used to improve the
training efficiency and all the convolutional operations and parameters
updating are based on the efficient GPU implementation. The experi-
mental results applied to some widely used benchmark outperform the
state of the art methods.

1 Introduction

Human action recognition is an important topic in computer vision. As a key step
in an overall human action understanding system, action recognition is applied
for many applications including human computer interaction, video surveillance,
game control system and etc [1, 2]. Based on the traditional video sequences
captured by RGB cameras, spatio-temporal features are widely used for the
recognition task [3]. With the recent development of high-speed depth cameras,
we can capture depth information of body’s 3D position and motion in real-
time [4]. Compared with the 2D information, the depth information has obvious
advantages because it can distinguish the human actions from more than one
view because the z-index displacement information which is lost in 2D frames
is valued here. The new data format has motivated researchers to propose more
innovative methods which are able to make full use of the depth information.

Convolutional neural network [5, 6] is an efficient recognition algorithm which
is widely used in pattern recognition, image processing and other fields. The
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weight sharing network structure is of significance to reduce the complexity of
network model and more similar to the biological neural network. As a special
design of a multi-layer perceptron for the recognition of 2D shapes, this network
structure has high invariance to translation, scaling, inclination and some other
anamorphosis. [6–9] have shown CNNs’ powerful ability in visual object recog-
nition on the premise of appropriate training and parameter adjustment. In the
field of human action recognition, [10] treats video frames as still images and
apply CNNs to recognize actions at the individual frame level. [11–13] success-
fully extract spatial and the temporal features by performing 3D convolutions.
But, impressive as these successes are, few research has been done on action
recognition with the depth inputs.

In this paper, we firstly propose a 2D-CNN based deep model for human ac-
tion recognition using depth maps captured by Kinect. The challenging datasets
in this field usually provide us a lot of video clips and each clip only perform one
complete action. Since traditional CNN is good at dealing with 2D inputs (usu-
ally the natural images), we need to engrave the frame sequences along the time
axis into a static image before building the neural network model. The overall
shape and position after superposition are used to indicate the action performed
by the clip. Motion History Image (MHI) [14, 15] and the Motion Energy Image
(MEI) [15] are two great engraving methods due to their simplicity and good
performance. Here we use Depth Motion Maps (DMM) [16] which looks like MHI
to a certain extent. DMM can accumulate global activities through entire video
sequences to represent the motion intensity but the temporal ordinal relation-
ship is lost. So we extend the DMM to DMM-Pyramid in order to avoid losing
too much temporal features. We regard all the DMMs in a DMM-Pyramid as
different channels of an image and the image is the final input for our architec-
ture. With the steps of DMM-Pyramid calculation done, a modified CNN model
is built to achieve the recognition result.

Secondly we propose a 3D-CNN based deep model in order to learn spatio-
temporal features automatically. Compared with the preprocessing work in 2D-
CNN model, the most difference is that here we divide the depth sequence in a
clip evenly into N parts and apply DMM calculation to these parts respectively
(In fact, it can be seen as the bottom layer of DMM-Pyramid). Then we stack
multiple contiguous DMMs together to form a DMM cube (with size Width ×
Height×N) rather than a group of individual DMMs in 2D architecture. After
that we convolute a 3D kernel to the cube. The remanning work is quite similar to
the previous model. Both of the 2D/3D models are evaluated on two benchmark
datasets: MSR Action3D dataset [1] and MSR Gesture3D dataset [17] which are
are captured with depth cameras.

The key contributions of this work can be summarized as follows:

– We propose to apply 2D/3D convolutional networks to recognize the human
actions captured by depth cameras. We use convolution operation to extract
spatial and temporal features from low-level video data automatically.

– We extend DMM to DMM-Pyramid and then we can organize the raw depth
sequence into formats which can be accepted by both 2D and 3D convolu-
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tional networks. The preprocessing work is simple enough and will keep the
raw information as much as possible.

– We propose to combine deep CNN models with different depth to further
boost the performance. We train multiple models at the same time and
apply a linear weighted combination to their outputs. Experimental result
has proved the operation’s effectiveness.

– We evaluate our models on the MSR Action3D dataset and MSR Gesture3D
dataset in comparison with the state-of-the-art methods. Experimental re-
sults show that the proposed models significantly outperforms other ones.

The rest of the paper is organized as follows. Section 2 reviews the recent
research work on human action recognition using the advantages of depth data.
Section 3 and section 4 describe the 2D/3D-CNN architectures we proposed in
detail. The experimental results and comparisons are given in section 5. Section
6 concludes the paper with future work.

2 Related works

Li et al [1] model the dynamics of the action by building an action graph and
describe the salient postures by a bag-of-points (BOPs). It’s an effective method
which is similar to some traditional 2D silhouette-based action recognition meth-
ods. The method does not perform well in the cross subject test due to some
significant variations in different subjects from MSR Action3D dataset.

Wu et al [18] extract features from depth maps based on Extended-Motion-
History-Image (Extended-MHI) and use the Multi-view Spectral Embedding
(MSE) algorithm. They try to find the frames that are similar to the begin-
ning and ending frame in the unsegmented testing video sequence for temporal
segmentation.

Yang et al [16] are motivated by the success of Histograms of Oriented Gra-
dients (HOG) in human detection. They extract Multi-perspective HOG de-
scriptors from DMM as representations of human actions. They also illustrate
how many frames are sufficient to build DMM-HOG representation and give
satisfactory experimental results on MSR Action3D dataset. Before that, they
have proposed an EigenJoints-based action recognition system by using a NBNN
classifier [19] with the same goal.

In order to deal with the problems of noise and occlusion in depth maps, Jiang
et al extracts semi-local features called random occupancy pattern (ROP) [20].
They propose a weighted sampling algorithm to reduce the computational cost
and claim that their method performs better in accuracy and computationally
efficiency than SVM trained by raw data. After that they further propose Local
Occupancy Patterns (LOP) features [21] which are similar to ROP in some case
and improve their results to some extent.

Oreifej et al [22] propose to capture the observed changing structure using
a histogram of oriented 4D surface normals (HON4D). They demonstrate that
their method captures the complex and articulated structure and motion within
the sequence using a richer and more discriminative descriptor than other ones.
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Different from all above approaches, our methods do not try to extract any
complex or so-called “rich” features from the depth sequences. We just leave the
task of building high-level features from low-level ones to the deep CNN models.
The preprocessing work on the raw inputs is quite simple.

3 A 2D-CNN Architecture

This section describes the 2D-CNN based deep model in detail. It shows how we
stack contiguous frames together into still images and convert action recognition
to a task which looks like traditional image classification based on CNN.

3.1 Depth Motion Map

[16] details the framework to compute action representation of DMM-HOG. In
this subsection, the HOG descriptor is no longer needed. The only thing we care
about is using DMM to stack depth sequences into the inputs which can be
accepted by CNN model.

     

(a) DMMfront                (b) DMMtop               (c) DMMside 

Fig. 1. Three DMMs represent the action “high arm wave”. They summarize the body
motion in the depth sequence from three orthogonal views.

To put it simply, DMMs are used to summarize the difference between each
two consecutive depth maps in a clip. Each 3D depth frame generates three 2D
binary maps including front views map mapf , side views map maps, and top
views map mapt. Then DMM is denoted as:

DMMv =
N−1∑
i=1

|mapiv −mapi+1
v |, (1)

where v ∈ {front, side, top} and N is the number of frames in a given clip.
Figure 1 shows an example of three DMM maps generated by the depth maps
sequence which performs the action “high arm wave”.
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(a) DMM-Pyramid-0

(b) DMM-Pyramid-1

(c) DMM-Pyramid-2

Fig. 2. A DMM-Pyramid architecture represents the action “pick up & throw” in
different levels.

3.2 DMM-Pyramid

While we utilize DMM to summarize each whole video clip, we can not avoid los-
ing some temporal information. For an example, there is a complex action called
“pick up & throw” in the benchmark. This action contains two consecutive sub-
actions: “bend to pick up” and “high throw”. If we only use one “general” DMM
(even from three perspectives) to do the representation work, the confusion may
occur between “pick up & throw” and “high throw” or “high arm wave” because
their total depth motions are similar to each others’.

In order to capture some temporal features of the DMM, we propose a simple
temporal-pyramid method to extend DMM. We recursively segment the action
into several parts along the time axis and then apply the DMM calculation
to each part respectively, i.e, if we use the dichotomy to segment the depth
sequence, the number of DMMs from top to bottom in the pyramid will be
1, 2, 4, · · · , 2h−1 where h is the hierarchy label. Figure 2 shows a DMM-Pyramid
architecture which describes the action “pick up & throw” more closely. In this
case, we can see that sub-actions in the complex action can be observed clearly
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with the pyramid growing. So we believe that using DMM-Pyramid as input will
improve the classification performance.

On the other hand, the “not-too-deep-hierarchy” pyramid will not increase
the computational complexity. In the process of DMM generation, calculating
the motions between each two consecutive depth maps and stacking them are
most time-consuming. But the work will not be repeated during the pyramid
generation because we can directly get high-level DMMs by overlapping low-
level DMMs together (e.g. overlapping two images in Figure 2(b) can get the
image in Figure 2(a) ).

3.3 CNN architecture

Fig. 3. Our 2D-CNN architecture for human action recognition with DMM-Pyramid
as input. The architecture consists of two convolution layers, two sub-sampling layers,
and one full connection part consisting of 1-3 layers.

Since all the videos have been organized into DMM-Pyramids, we can sim-
ply apply the model similar to the one introduced by LeCun et al [23] to the
classification task. The final architecture is illustrated in figure 3.

Including the input layer, the architecture consists of 7-9 layers. We can
observe the performance when the full connected multi-layer perceptron part
varies. The shape of the filters in two convolution layers is alternative and the
poolsize of sub-sampling layers is fixed to 2×2. The size of DMMs is rescaled to
100× 100. The first convolution layer consists of 40 feature maps of size 88× 88
pixels with the 13×13 filter shape. After max-pooling, the layer connected to the
first convolution layer is composed of 40 feature maps of size 44× 44 . Following
the same principle, the second convolution layer has 60 feature maps of size
34×34 and the filter shape is 11×11. Then the following sub-sampling layer has
60 feature maps of size 17× 17. The layers of the multilayer perceptron part is
not fixed. Finally, we can instantiate the network by using a logistic regression
layer in the end of the whole architecture.
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Fig. 4. Our 3D-CNN architecture for human action recognition with DMM cube as
input. The architecture consists of two convolution layers, two sub-sampling layers,
and one full connection part consisting of 1-3 layers.

3.4 Strategies for Performance Improvement

Since the benchmarks for human action recognition with depth cameras are usu-
ally not large-scale, our architecture’s size seems to be much larger than some
famous ones. The implementation of the convolution and parameters updating
is based on Theano [24] so that we can use fast GPUs to accelerate our exper-
iments. We employ the regularization here to overcome the overffting. L1-norm
and L2-sqrt are added in the cost function. More anecdotally, we find that the
output probability distribution for each action class changes with the depth of
the architecture. So it is plausible that combining the results of single architec-
tures with different depth will improve the performance. Our final strategy is
that training three models with different depth (7-9 in this paper) and combin-
ing their outputs after each N iterations. The inverse of validation errors of each
model are set as weights. In fact, our experiment in section 5 has proved that
the combination can both improve the precision and reduce training time.

4 A 3D-CNN Architecture

Compared with 2D CNN, 3D convolution is more straightforward to handle
video inputs (depth maps sequence in this paper). The extended convolution
in time dimension help us to learn spatio-temporal features automatically. The
architecture is shown in figure 4.

4.1 DMM Segmentation and Stacking

Unlike 2D model, the inputs for 3D model need to keep information for the
convolution operation on the temporal axis. Single images are no longer appli-
cable here. Our preprocessing method is dividing the depth sequence in a clip
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evenly into N parts and applying DMM calculation to these parts respective-
ly. So we get N segmented DMMs and they have temporal ordinal relationship
between each other. Then we stack these contiguous DMMs together to form a
DMM cube (with size Width × Height × N) and convolute a 3D kernel to it.
An example is shown in the left part of figure 4. From another perspective, the
final cube is just composed of stacking a bottom layer of a DMM-Pyramid (The
DMM-Pyramid-2 in figure 2 can form a usable cube and N is 4 in this case).

4.2 CNN architecture

Regardless of the difference in dimension, the 3D architecture is almost same as
the 2D one. The 3D kernel we used is same as the one in [11]. In our experiment,
the input layer gets cubes with size 50×50×8, then the 3D filter shape is 7×7×3
so that the 40 “feature cubes” in the first convolution have the size 44× 44× 6.
We apply 2 × 2 max-pooling (in the spatial dimension) on each of the feature
cubes in the sub-sampling layer and the cubes’ size is reduced to 22 × 22 × 6.
The next 3D filter shape is 8×8×4 and sub-sampling size is 3×3. So the size of
final input for the full connected multi-layer perceptron part is 60×5×5×3 (60
filters). The last part is exactly the same as the full connection part in 2D-CNN
architecture.

5 Experimental results and discussion

In this section, we show our experimental results produced by applying our
method to the public domain MSR Action3D/Gesture3D datasets and compare
them with the existing methods.

5.1 Action Recognition on MSR Action3D dataset

There are 20 action types in the MSR Action3D dataset. Each action type con-
tains 10 subjects and they performed the same action 2-3 times for each subject.
567 depth map sequences are provided in total and 10 of them are abandoned
because the skeletons are either missing or too erroneous. The resolution is
320 × 240. Each depth map sequence we used is regarded as a clip. We com-
pare our method with the state-of-the-art methods on the cross-subject test
setting [1], where half subjects are used for training and the rest ones are used
for testing.

The performances of our method are shown in Table 1. Intuitively, we see
that our work has shown a significant improvement comparing to other methods.
The two results of our methods in this table are achieved under the optimal
parameters and the combination strategy which is described in section 3.4. Using
2D-CNN with DMM-Pyramid as inputs we obtain the accuracy 91.21%. It shows
that the DMM-Pyramid is able to retain enough original information of the
video clip and the CNN successfully learns high-level features from it. On the
other hand, the 3D-CNN’s performance (86.08%) is not as good as expected. We
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Table 1. Recognition accuracies (%) comparison based on MSR Action3D dataset

Method Accuracy %

2D-CNN with DMM-Pyramid 91.21

3D-CNN with DMM-Cube 86.08

HON4D + Ddisc[22] 88.89

Jiang et al. [21] 88.20

Jiang et al. [20] 86.50

Yang et al. [16] 85.52

believe that the resolution 50× 50 for the entire human motion is too small. It
will lose much details of body shape and the temporal features in the dataset
may not be as important as spatial features.

Fig. 5. The overall confusion matrix for the fixed cross subject test.

Figure 5 shows the confusion matrix of the 2D-CNN (91.21%). The error
distribution made by our architecture seems to be more uniform than [21, 22].
Many classification errors occur if two actions are too similar to each other, such
as “hand catch” and “high throw” in [21] (25.00%) or “draw X” and “draw
circle” in [22] (46.7%). By contrast, the lowest recognition accuracy for single
action class in our experiment is 66.67% (“hand catch”). In fact, our method
works very well for almost all of the actions.

Figure 6 shows the pace of decline of different models’ error rate. The depth
of these models ranges from 7 to 9. The error rate decreases fast in the first 10
to 15 iterations and then becomes very stable. For a single model, the one with
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Fig. 6. The pace of decline of different models’ error rate.

depth of 9 performs best and takes only 30 iterations to achieve a better result
(89.02%) than HON4D [22] and Actionlet Ensemble [21]. On the contrary, the
most shallow model reaches 88.28% at iteration 49 and will take another 150
iterations to reach 88.65%. At the same time you may see that the combination
of three models touches the 90% line at amazing iteration 13 and the best result
showed in table 1 is achieved at iteration 33. It take no more than 30 minutes
to learn parameters while the single model cannot reach the accuracy by using
days of time. Another interesting thing is that increasing the number of hidden
units in the multilayer perceptron part can also slightly speed up the error rate
decreasing but a single iteration time will be longer because there are more
parameters to train.

5.2 Gesture Recognition on MSR Gesture3D dataset

There are 12 dynamic American Sign Language (ASL) gestures in MSR Ges-
ture3D dataset: “bathroom”, “blue”, “finish”, “green”, “hungry”, “milk”, “past”,
“pig”, “store”, “where”, “j”, “z”. All of the gestures were captured by a Kinect
device. There are 336 files in total, each corresponding to a depth sequence just
like MSR Action3D dataset. We follow the experiment setup in [17]. Table 2
shows that our architecture outperforms the state of the art methods. We also
notice that the 3D-CNN architecture performs much better here than in Ac-
tion3D dataset. We believe that low resolution will not cause too much impact
on the recognition of local motion like gestures.
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Table 2. Recognition accuracies (%) comparison based on MSR Gesture3D dataset

Method Accuracy %

2D-CNN with DMM-Pyramid 94.35

3D-CNN with DMM-Cube 92.25

HON4D + Ddisc[22] 92.45

Jiang et al. [21] 88.50

Yang et al. [16] 89.20

6 Conclusion

In this paper, we presented two deep architectures based on convolutional neural
networks for human action recognition from depth sequences. In 2D-CNN based
architecture, we proposed a DMM-Pyramid method to stack contiguous frames
together into still images and convert action recognition to “image classification”
work. In 3D-CNN based architecture, we use the DMMCube as the inputs for the
networks and expect to learn more temporal features. Both of the architectures
aim to learn spatial and temporal features automatically from the raw inputs
without complex preprocessing. We also find that applying a linear weighted
combination to CNN models with different depth can significantly improve the
precision and reduce learning time. Our experiments on some widely-used and
challenging datasets show that the proposed architectures give competitive re-
sults, among the best of related work, both on MSR Action3D (91.21%) and
MSR Gesture3D (94.35%). Our methods are easy to implement based on the
open-source python library Theano and anyone can reproduce the experimen-
t to achieve the good (or even better) results following the setup described in
section 5.

Furthermore, although the MSR Action3D dataset remains to be the most
widely used dataset for human action recognition with depth inputs, there are
some other challenging datasets (especially more realistic) for us to verify our
architectures’ genericity, e.g MSR DailyActivity3D dataset [21] and Subtle Walk-
ing From CMU Mocap Dataset [25]. We also plan to do a large-scale experiment
to confirm our CNN models’ performance in practice.

Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61321491 and 61272218.

References

1. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In: Com-
puter Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on, IEEE (2010) 9–14

2. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A.,
Cook, M., Moore, R.: Real-time human pose recognition in parts from single
depth images. Communications of the ACM 56 (2013) 116–124



12 Rui Yang, Ruoyu Yang

3. Li, W., Zhang, Z., Liu, Z.: Expandable data-driven graphical modeling of human
actions based on salient postures. Circuits and Systems for Video Technology,
IEEE Transactions on 18 (2008) 1499–1510

4. Zhang, S.: Recent progresses on real-time 3d shape measurement using digital
fringe projection techniques. Optics and lasers in engineering 48 (2010) 149–158

5. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: A convolutional
neural-network approach. Neural Networks, IEEE Transactions on 8 (1997) 98–113

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
(2012) 1097–1105

7. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features
for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35 (2013) 1915–1929

8. Kavukcuoglu, K., Sermanet, P., Boureau, Y.L., Gregor, K., Mathieu, M., Cun,
Y.L.: Learning convolutional feature hierarchies for visual recognition. In: Ad-
vances in neural information processing systems. (2010) 1090–1098

9. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE (2012) 3642–3649

10. Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.: Toward
automatic phenotyping of developing embryos from videos. Image Processing,
IEEE Transactions on 14 (2005) 1360–1371

11. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human
action recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35 (2013) 221–231

12. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential
deep learning for human action recognition. In: Human Behavior Understanding.
Springer (2011) 29–39

13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2014)

14. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants
and applications. Machine Vision and Applications 23 (2012) 255–281

15. Han, J., Bhanu, B.: Individual recognition using gait energy image. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on 28 (2006) 316–322

16. Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based
histograms of oriented gradients. In: Proceedings of the 20th ACM international
conference on Multimedia, ACM (2012) 1057–1060

17. Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture
recognition with a depth sensor. In: Signal Processing Conference (EUSIPCO),
2012 Proceedings of the 20th European, IEEE (2012) 1975–1979

18. Wu, D., Zhu, F., Shao, L.: One shot learning gesture recognition from rgbd images.
In: Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on, IEEE (2012) 7–12

19. Yang, X., Tian, Y.: Eigenjoints-based action recognition using naive-bayes-nearest-
neighbor. In: Computer Vision and Pattern Recognition Workshops (CVPRW),
2012 IEEE Computer Society Conference on, IEEE (2012) 14–19

20. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3d action recognition
with random occupancy patterns. In: Computer Vision–ECCV 2012. Springer
(2012) 872–885



DMM-Pyramid Based Deep Architectures for Action Recognition 13

21. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recogni-
tion with depth cameras. In: Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, IEEE (2012) 1290–1297

22. Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4d normals for activity recogni-
tion from depth sequences. In: Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, IEEE (2013) 716–723

23. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks 3361 (1995)

24. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a cpu and gpu math expres-
sion compiler. In: Proceedings of the Python for scientific computing conference
(SciPy). Volume 4. (2010) 3

25. Han, L., Wu, X., Liang, W., Hou, G., Jia, Y.: Discriminative human action recog-
nition in the learned hierarchical manifold space. Image and Vision Computing 28
(2010) 836–849


